Senin, 31 Agustus 2009

fungsi hard disk


Apa Sich Fungsi Hard Disk??


Ketika Anda menyimpan data pada komputer, pasti salah satu media penyimpanan yang paling populer adalah di hardisk. Hardisk sendiri juga memiliki singkatan yaitu HDD. Hardisk disini mempunyai peranan yang cukup penting dalam komputer. Karena merupakan media penyimpanan dari Operating System dari komputer. Seperti Windows maupun Linux. Cobalah Anda bayangkan kalau seandainya tidak ada Hardisk??? Pasti komputer Anda tidak dapat bekerja bukan...
Fungsi utamanya sebagai media penyimpanan atau storage data secara permanen.
Hard disk menyimpan bermacam-macam informasi, salah satunya informasi mengenai hardware yang ada di dalam PC tersebut, lalu OS itu sendiri. Hard disk merupakan salah satu komponen yang menentukan kinerja PC. Semakin cepat hard disk bekerja, semakin cepat pula transfer yang dihasilkan. Hard disk IDE mempunyai 4 tingkatan kelas, masing-masing Ultra DMA/33, Ultra DMA/66, Ultra/100, dan Ultra DMA/133. DMA singkatan dari Direct Memory Access yang berfungsi untuk meningkatkan transfer data. Maksud Ultra DMA/33 adalah daya transfer rata-ratanya 33 MBps. Jadi,Ultra DMA/133 sama dengan transfer datanya 133 MBps. IDE yang terbaru menggunakan SATA {serial ATA} yang sebelumnya menggunakan paralel ATA. Penggunaan hard disk jenis SATA masih sedikit dan mahal, tetapi kecepatan transfernya lebih cepat daripada paralel ATA.
Hard disk lambat laun mengalami peningkatan dalam hal kapasitas penyimpanan data. Pada masa Windows 3.1, penggunaan hard disk dengan ukuran 300 MB sudah cukup. Pada Windows 98,hard disk dengan ukuran 8.3 GB sudah lebih dari cukup. Untuk pemakaian hard disk yang intensif, ukuran tersebut sangat kurang, apalagi menggunakan OS yang baru dan program yang baru pula. Mungkin untuk ukuran standar, hard disk yang dipakai sekarang adalah 20 GB atau lebih tergantung kebutuhan anda.
Kecepatan putar hard disk bermacam-macam, antara lain 5400 RPM, 7200 RPM, atau lebih. Putaran yang dihasilkan hard disk yang memiliki RPM 7200 lebih bising daripada 5400 RPM, akibatnya hard disk menjadi lebih cepat panas. Anda memerlukan kipas pendingin untuk mendinginkan dan menjaga peranti ini dapat hidup bertahan lama.
Demikianlah penjelasan dari saya tentang Hardisk. Semoga menjadi sesuatu yang dapat bermanfaat untuk Anda. Terima kasih.

Fungsi Processor

Penjelasan Tentang Processor

Nah, melanjutkan pembahasan sebelumnya, sekarang akan kita bahas mengenai komponen komputer yang penting banget yaitu PROCESSOR. Tak terasa sudah masuk bagian ke-5 pembahasan mengenai komponen komputer. Penjelasan kali ini mungkin akan sedikit panjang, dan akan disambung pada penjelasan berikutnya, karena membahas processor sama saja dengan membaca buku setebal 500 halaman. Namun saya akan menjelaskan secara simpel dan mudah dimengerti bagi orang awam, tentunya tidak terlalu mendetail penjelasan tentang processor ini.

Processor atau yang lebih dikenal dengan sebutan CPU (Central Processing Unit), merupakan bagian dari komputer yang berfungsi sebagai pusat untuk memproses segala sesuatu yang akan dilakukan oleh komputer. Boleh dikatakan bahwa processor merupakan otak dari sebuah komputer. Bayangkan saja jika manusia tidak memiliki otak, maka tentunya manusia tersebut tidak dapat berbuat apa-apa, dan bisa dikatakan sebagai mayat hidup (kaya zombie donk). Apapun aktivitas yang dilakukan oleh komputer, yang memprosesnya adalah processor.

Silahkan lihat gambar processor dibawah ini !

Merunut sejarah, processor telah banyak mengalami revolusi/perubahan, baik dari segi bentuk/arsitektur, fungsi dan juga kecepatan. Dari jaman processor keluaran Intel yaitu processor Intel 4004 (Generasi awal tapi bukan yang pertama) hingga saat ini yaitu Intel Core 2 Processor. Perbedaannya tentu sangat-sangat jauh baik dari segi bentuk, fungsi dan kecepatan. Intel 4004 memiliki clock speed sebesar 108KHz, jumlah transistor 2300, belum terdapat cache, bus speed 108 KHz, dan berfungsi untuk manipulasi aritmatika dasar. Processor Intel Core 2 Processor memiliki clock speed sebesar 3,2 GHz, jumlah transistor sebanyak 820 juta, cache sebesar 12 MB, bus speed 1600 MHz, dan memiliki fungsi yang sangat kompleks untuk multimedia, komputasi dan sebagainya (fungsi komputer saat ini).

Lihat gambar dibawah ini !

Intel 4004

Intel Core 2 Processor

Fungsi sebuah processor dalam komputer sangatlah penting, karena processor merupakan pusat untuk mengontrol dan memproses kerja sebuah komputer. Sebagai contoh fungsi dari processor adalah ketika Anda hendak menjalankan sebuah aplikasi seperti memutar lagu pada sebuah player seperti Winamp. Pertama-tama tentunya Anda akan mengklik icon Winamp untuk memainkan lagu yang Anda inginkan. Ketika Anda klik Winamp, mouse memberikan sinyal kepada komputer Anda melalui kabel mouse menuju mainboard Anda. Kemudian mainboard melalui jalur khusus, sinyal tersebut diteruskan melalui sebuah jalur BUS yang akan menuju ke Memori Utama, setelah diregister di memori utama, baru kemudian diteruskan menuju Processor untuk diolah sinyal yang dikirimkan tersebut. Setelah processor memproses sinyal tersebut (pengecekan request sinyal tersebut dapat dipenuhi atau tidak), processor akan mengirimkan sinyal kembali kepada komponen-komponen lainnya yang diperlukan untuk menjalankan program Winamp tersebut (seperti harddisk, memory dan sebagainya). Barulah program Winamp akan tampil di monitor Anda.

Perlu Anda ketahui, processor hanya dapat mengenali instruksi dengan notasi bilangan Biner (ex.01010001010). Merupakan notasi untuk perangkat elektronik dimana bilangan NOL (0) menandakan tidak terdapat sinyal listrik, dan bilangan SATU (1) menandakan adanya sinyal listrik. Tentunya urutan proses tersebut tidak dapat dibayangkan hanya sekejap mata saja, karena kecepatan processor yang dapat mencapai 3,2 GHz (3200 Juta getaran perdetik), jadi prosesnya sangat cepat hanya sepersekian mili detik saja.

Pada awalnya, processor hanya difungsikan untuk pengolahan aritmatika saja, seperti halnya kalkulator pada saat ini. Namun sekarang ini processor telah bergeser fungsinya mengarah ke multimedia.

Sabtu, 29 Agustus 2009

tentang kado

hp nokia brand, I had bought for my parents because I won the championship in race two tahfizul. hp nokia that was bought in Jakarta when I was grade 4 to. was bought at a price ranging from nine hundred thousand dollars, although hpnya inexpensive and practical because there is no internet I remain grateful for the use of money by purchasing the hard work my parents, three April two thousand seven date is the first hp that I have from the time the age of eight years, not forgetting my parents who bought the beautiful colors of the color blue like the beautiful sea, after I bought it immediately told to my sister that I have a brand new hp nokia, my sister immediately wanted to borrow it for my sister most like the game I was happily allowed him to play and put on some music hp in hp it, because my brother memakainy too long that I had the battery out immediately took it and immediately hp hp mengecas it, I think the mob was quickly up the batteries I went straight hp menyetopkannya apparently was still not filled my battery went straight back mengecas my hp nokia, for nokia hp is not damaged I still use for my purposes is to call my family or my friends call me and hp it was also able to sms

Senin, 10 Agustus 2009

Processor

Jump to: navigation, search

A word processor (more formally known as document preparation system) is a computer application used for the production (including composition, editing, formatting, and possibly printing) of any sort of printable material.

Word processor may also refer to an obsolete type of stand-alone office machine, popular in the 1970s and 80s, combining the keyboard text-entry and printing functions of an electric typewriter with a dedicated computer for the editing of text. Although features and design varied between manufacturers and models, with new features added as technology advanced, word processors for several years usually featured a monochrome display and the ability to save documents on memory cards or diskettes. Later models introduced innovations such as spell-checking programs, increased formatting options, and dot-matrix printing. As the more versatile combination of a personal computer and separate printer became commonplace, the word processor disappeared.

Word processors are descended from early text formatting tools (sometimes called text justification tools, from their only real capability). Word processing was one of the earliest applications for the personal computer in office productivity.

Although early word processors used tag-based markup for document formatting, most modern word processors take advantage of a graphical user interface providing some form of What You See Is What You Get editing. Most are powerful systems consisting of one or more programs that can produce any arbitrary combination of images, graphics and text, the latter handled with type-setting capability.

Microsoft Word is the most widely used computer word processing system; Microsoft estimates over five hundred million people use the Office suite, which includes Word. There are also many other commercial word processing applications, such as WordPerfect, which dominated the market from the mid-1980s to early-1990s, particularly for machines running Microsoft's MS-DOS operating system. Open-source applications such as Abiword, KWord, LyX and OpenOffice.org Writer are rapidly gaining in popularity.[citation needed] Online word processors such as Google Docs are a relatively new category.

Contents

[hide]

[edit] Characteristics

Word processing typically refers to text manipulation functions such as automatic generation of:

  • batch mailings using a form letter template and an address database (also called mail merging);
  • indices of keywords and their page numbers;
  • tables of contents with section titles and their page numbers;
  • tables of figures with caption titles and their page numbers;
  • cross-referencing with section or page numbers;
  • footnote numbering;
  • new versions of a document using variables (e.g. model numbers, product names, etc.)

Other word processing functions include "spell checking" (actually checks against wordlists), "grammar checking" (checks for what seem to be simple grammar errors), and a "thesaurus" function (finds words with similar or opposite meanings). In most languages grammar is very complex, so grammar checkers tend to be unreliable and also require a large amount of RAM.[citations needed] Other common features include collaborative editing, comments and annotations, support for images and diagrams and internal cross-referencing.

Word processors can be distinguished from several other, related forms of software:

Text editors (modern examples of which include Notepad, BBEdit, Kate, Gedit), were the precursors of word processors. While offering facilities for composing and editing text, they do not format documents. This can be done by batch document processing systems, starting with TJ-2 and RUNOFF and still available in such systems as LaTeX (as well as programs that implement the paged-media extensions to HTML and CSS). Text editors are now used mainly by programmers, website designers, and computer system administrators. They are also useful when fast startup times, small file sizes, editing speed and simplicity of operation are preferred over formatting.

Later desktop publishing programs were specifically designed to allow elaborate layout for publication, but often offered only limited support for editing. Typically, desktop publishing programs allowed users to import text that was written using a text editor or word processor.

Almost all word processors enable users to employ styles, which are used to automate consistent formatting of text body, titles, subtitles, highlighted text, and so on.

Styles greatly simplify managing the formatting of large documents, since changing a style automatically changes all text that the style has been applied to. Even in shorter documents styles can save a lot of time while formatting. However, most help files refer to styles as an 'advanced feature' of the word processor, which often discourages users from using styles regularly.

[edit] Document statistics

A

Power supply

Power supply is a reference to a source of electrical power. A device or system that supplies electrical or other types of energy to an output load or group of loads is called a power supply unit or PSU. The term is most commonly applied to electrical energy supplies, less often to mechanical ones, and rarely to others.

Contents

[hide]

[edit] Electrical power supplies

This term covers the power distribution system together with any other primary or secondary sources of energy such as:

Constraints that commonly affect power supplies are the amount of power they can supply, how long they can supply it without needing some kind of refueling or recharging, how stable their output voltage or current is under varying load conditions, and whether they provide continuous power or pulses.

The regulation of power supplies is done by incorporating circuitry to tightly control the output voltage and/or current of the power supply to a specific value. The specific value is closely maintained despite variations in the load presented to the power supply's output, or any reasonable voltage variation at the power supply's input. This kind of regulation is commonly categorized as a Stabilized power supply.

[edit] Power supply types

Power supplies for electronic devices can be broadly divided into linear and switching power supplies. The linear supply is a relatively simple design that becomes increasingly bulky and heavy for high current devices; voltage regulation in a linear supply can result in low efficiency. A switched-mode supply of the same rating as a linear supply will be smaller, is usually more efficient, but will be more complex.

[edit] Battery power supply [1]

A battery is a type of linear power supply that offers benefits that traditional line-operated power supplies lack: mobility, portability, and reliability. A battery consists of multiple electrochemical cells connected to provide the voltage desired.

The most commonly used dry-cell battery is the carbon-zinc dry cell battery.[2] Dry-cell batteries are made by stacking a carbon plate, a layer of electrolyte paste, and a zinc plate alternately until the desired total voltage is achieved. The most common dry-cell batteries have one of the following voltages: 1.5, 3, 6, 9, 22.5, 45, and 90. During the discharge of a carbon-zinc battery, the zinc metal is converted to a zinc salt in the electrolyte, and magnesium dioxide is reduced at the carbon electrode. These actions establish a voltage of approximately 1.5 V.

The lead-acid storage battery may be used. This battery is rechargeable; it consists of lead and lead/dioxide electrodes which are immersed in sulfuric acid. When fully charged, this type of battery has a 2.06-2.14 V potential. During discharge, the lead is converted to lead sulfate and the sulfuric acid is converted to water. When the battery is charging, the lead sulfate is converted back to lead and lead dioxide.

A nickel-cadmium battery has become more popular in recent years. [3]This battery cell is completely sealed and rechargeable. The electrolyte is not involved in the electrode reaction, making the voltage constant over the span of the batteries long service life. During the charging process, nickel oxide is oxidized to its higher oxidation state and cadmium oxide is reduced. The nickel-cadmium batteries have many benefits. They can be stored both charged and uncharged. They have a long service life, high current availabilities, constant voltage, and the ability to be recharged.

[edit] Linear power supply

A home-made linear power supply (used here to power amateur radio equipment)

An AC powered linear power supply usually uses a transformer to convert the voltage from the wall outlet (mains) to a different, usually a lower voltage. If it is used to produce DC, a rectifier is used. A capacitor is used to smooth the pulsating current from the rectifier. Some small periodic deviations from smooth direct current will remain, which is known as ripple. These pulsations occur at a frequency related to the AC power frequency (for example, a multiple of 50 or 60 Hz).

The voltage produced by an unregulated power supply will vary depending on the load and on variations in the AC supply voltage. For critical electronics applications a linear regulator will be used to stabilize and adjust the voltage. This regulator will also greatly reduce the ripple and noise in the output direct current. Linear regulators often provide current limiting, protecting the power supply and attached circuit from overcurrent.

Adjustable linear power supplies are common laboratory and service shop test equipment, allowing the output voltage to be set over a wide range. For example, a bench power supply used by circuit designers may be adjustable up to 30 volts and up to 5 amperes output. Some can be driven by an external signal, for example, for applications requiring a pulsed output.

The simplest DC power supply circuit consists of a single diode and resistor in series with the AC supply. This circuit is common in rechargeable flashlights.

[edit] AC/ DC supply

In the past, mains electricity was supplied as DC in some regions, AC in others. A simple, cheap linear power supply would run directly from either AC or DC mains, often without using a transformer. The power supply consisted of a rectifier and a capacitor filter. The rectifier was essentially a conductor, having no sudden effect when operating from DC.

[edit] Switched-mode power supply

A computer's switched mode power supply unit.

A switched-mode power supply (SMPS) works on a different principle. AC mains input is directly rectified without the use of a transformer, to obtain a DC voltage. This voltage is then sliced into small pieces by a high-speed electronic switch. The size of these slices grows larger as power output requirements increase.

The input power slicing occurs at a very high speed (typically 10 kHz — 1 MHz). High frequency and high voltages in this first stage permit much smaller step down transformers than are in a linear power supply. After the transformer secondary, the AC is again rectified to DC. To keep output voltage constant, the power supply needs a sophisticated feedback controller to monitor current draw by the load.

Modern switched-mode power supplies often include additional safety features such as the crowbar circuit to help protect the device and the user from harm.[4] In the event that an abnormal high current power draw is detected, the switched-mode supply can assume this is a direct short and will shut itself down before damage is done. For decades PC computer power supplies have also provided a power good signal to the motherboard which prevents operation when abnormal supply voltages are present.

Switched mode power supplies have an absolute limit on their minimum current output. [5] They are only able to output above a certain power level and cannot function below that point. In a no-load condition the frequency of the power slicing circuit increases to great speed, causing the isolation transformer to act as a tesla coil, causing damage due to the resulting very high voltage power spikes. Switched-mode supplies with protection circuits may briefly turn on but then shut down when no load has been detected. A very small low-power dummy load such as a ceramic power resistor or 10 watt light bulb can be attached to the supply to allow it to run with no primary load attached.

Power factor has become a recent issue of concern for computer manufacturers. Switched mode power supplies have traditionally been a source of power line harmonics and have a very poor power factor. Many computer power supplies built in the last few years now include power factor correction built right into the switched-mode supply, and may advertise the fact that they offer 1.0 power factor.

By slicing up the sinusoidal AC wave into very small discrete pieces, the portion of the alternating current not used stays in the power line as very small spikes of power that cannot be utilized by AC motors and results in waste heating of power line transformers. Hundreds of switched mode power supplies in a building can result in poor power quality for other customers surrounding that building, and high electric bills for the company if they are billed according to their power factor in addition to the actual power used. Filtering capacitor banks may be needed on the building power mains to suppress and absorb these negative power factor effects.

[edit] Programmable power supply

Programmable power supplies are those in which the output voltage can be varied remotely. One possible option is digital control by a computer interface. Variable properties include voltage, current, and frequency. This type of supply is composed of a processor, voltage/current programming circuits, current shunt, and voltage/current read-back circuits.

Programmable power supplies can furnish DC, AC, or both types of output. The AC output can be either single-phase or three-phase. Single-phase is generally used for low-voltage, while three-phase is more common for high-voltage power supplies.

When choosing a programmable power supply, several specifications should be considered. For AC supplies, output voltage, voltage accuracy, output frequency, and output current are important attributes. For DC supplies, output voltage, voltage accuracy, current, and power are important characteristics. Many special features are also available, including computer interface, overcurrent protection, overvoltage protection, short circuit protection, and temperature compensation. Programmable power supplies also come in a variety of forms. Some of those are modular, board-mounted, wall-mounted, floor-mounted or bench top.

Programmable power supplies are now used in many applications. Some examples include automated equipment testing, crystal growth monitoring, and differential thermal analysis [6].

[edit] Uninterruptible power supply

An Uninterruptible Power Supply (UPS) takes its power from two or more sources simultaneously. It is usually powered directly from the AC mains, while simultaneously charging a storage battery. Should there be a dropout or failure of the mains, the battery instantly takes over so that the load never experiences an interruption. Such a scheme can supply power as long as the battery charge suffices, e.g., in a computer installation, giving the operator sufficient time to effect an orderly system shutdown without loss of data. Other UPS schemes may use an internal combustion engine or turbine to continuously supply power to a system in parallel with power coming from the AC mains. The engine-driven generators would normally be idling, but could come to full power in a matter of a few seconds in order to keep vital equipment running without interruption. Such a scheme might be found in hospitals or telephone central offices.

[edit] High-voltage power supply

High voltage refers to an output on the order of hundreds or thousands of volts. High-voltage power supplies use a linear setup to produce an output voltage in this range.

When choosing a high-voltage power supply, there are several options to consider. Some of these are maximum current, maximum power, maximum voltage, output polarity, user interface, and style. The first four of these characteristics of course depend upon the supply's intended application. There are many available types of user interfaces. For example, the interface may be local in the form of a digital meter, or analog meter. Also, the interface can be remote, as in a computer connection. Numerous styles of high-voltage power supplies are also manufactured. Available models come in printed circuit board mount, open frame (as designed to be incorporated into an instrument), and rack mount. Models with multiple outputs can also be found [7].

[edit] Voltage multipliers

Voltage multipliers, as the name implies, are circuits designed to multiply the input voltage. The input voltage may be doubled (voltage doubler), tripled (voltage tripler), quadrupled (voltage quadrupler), etc. Voltage multipliers are also power converters. An AC input is converted to a higher DC output. These circuits allow high voltages to be obtained using a much lower voltage AC source.

Typically, voltage multipliers are composed of half-wave rectifiers, capacitors, and diodes. For example, a voltage tripler consists of three half-wave rectifiers, three capacitors, and three diodes. Full-wave rectifiers may be used in a different configuration to achieve even higher voltages. Also, both parallel and series configurations are available. For parallel multipliers, a higher voltage rating is required at each consecutive multiplication stage, but less capacitance is required. The voltage capability of the capacitor limits the maximum output voltage.

Voltage multipliers have many applications. For example, voltage multipliers can be found in everyday items like televisions and photocopiers. Even more applications can be found in the laboratory, such as cathode ray tubes, oscilloscopes, and photomultiplier tubes.[8][9]

[edit] Power supply applications

[edit] Computer power supply

A modern computer power supply is a switched-mode supply designed to convert 110-240 V AC power from the mains supply, to several output both positive (and historically negative) DC voltages in the range + 12V,-12V,+5V,+5VBs and +3.3V. The first generation of computers power supplies were linear devices, but as cost became a driving factor, and weight became important, switched mode supplies are almost universal.

The diverse collection of output voltages also have widely varying current draw requirements, which are difficult to all be supplied from the same switched-mode source. Consequently most modern computer power supplies actually consist of several different switched mode supplies, each producing just one voltage component and each able to vary its output based on component power requirements, and all are linked together to shut down as a group in the event of a fault condition.

The most common modern computer power supplies are built to conform to the ATX form factor. The power rating of a PC power supply is not officially certified and is self-claimed by each manufacturer.[10]A common way to reach the power figure for PC PSUs is by adding the power available on each rail, which will not give a true power figure. The more reputable makers advertise "True Wattage Rated" to give consumers the idea that they can trust the power advertised.

[edit] Welding power supply

VGA CARD

.

A video card, video adapter or a graphics accelerator card, display adapter, or graphics card, is an expansion card whose function is to generate and output images to a display. Many video cards offer added functions, such as accelerated rendering of 3D scenes, video capture, TV tuner adapter, MPEG-2 and MPEG-4 decoding, FireWire, light pen, TV output, or the ability to connect multiple monitors.

Video hardware can be integrated on the mainboard, as it often happened with early computers; in this configuration it was sometimes referred to as a video controller or graphics controller.

Contents

[hide]

[edit] History


Year Text Mode
(columns/lines)
Graphics Mode
(resolution/colors)
Memory
MDA 1981 80×25 - 4 KB
CGA 1981 80×25 640×200 / 4 16 KB
HGC 1982 80×25 720×348 / 2 64 KB
PGA 1984 80×25 640×480 / 256 320 KB
EGA 1984 80×25 640×350 / 16 256 KB
8514 1987 80×25 1024×768 / 256 -
MCGA 1987 80×25 320×200 / 256 -
VGA 1987 80×25 640×480 / 16 256 KB
SVGA
(VBE 1.x)
1989 80×25 800×600 / 256 512 KB
640×480+ / 256+ 512 KB+
XGA 1990 80×25 1024×768 / 256 1 MB
XGA-2 1992 80×25 1024×768 / 65,536 2 MB
SVGA
(VBE 3.0)
1998 132×60 1280×1024 / 16.8M -

The first IBM PC video card, which was released with the first IBM PC, was developed by IBM in 1981. The MDA (Monochrome Display Adapter) could only work in text mode representing 80 columns and 25 lines (80x25) in the screen. It had a 4KB video memory and just one color.[1]

Starting with the MDA in 1981, several video cards were released, which are summarized in the attached table.[2][3][4][5]

VGA was widely accepted, which led some corporations such as ATI, Cirrus Logic and S3 to work with that video card, improving its resolution and the number of colours it used. This developed into the SVGA (Super VGA) standard, which reached 2 MB of video memory and a resolution of 1024x768 at 256 color mode.

In 1995 the first consumer 2D/3D cards were released, developed by Matrox, Creative, S3, ATI and others.[citation needed] These video cards followed the SVGA standard, but incorporated 3D functions. In 1997, 3dfx released the Voodoo graphics chip, which was more powerful compared to other consumer graphics cards, introducing 3D effects such mip mapping, Z-buffering and anti-aliasing into the consumer market. After this card, a series of 3D video cards were released, such as Voodoo2 from 3dfx, TNT and TNT2 from NVIDIA. The bandwidth required by these cards was approaching the limits of the PCI bus capacity. Intel developed the AGP (Accelerated Graphics Port) which solved the bottleneck between the microprocessor and the video card. From 1999 until 2002, NVIDIA controlled the video card market (taking over 3dfx) with the GeForce family.[6] The improvements carried out at this time were focused in 3D algorithms and graphics processor clock rate. Video memory was also increased to improve their data rate; DDR technology was incorporated, improving the capacity of video memory from 32 MB with GeForce to 128 MB with GeForce 4.

From 2002 onwards, the video card market came to be dominated almost entirely by the competition between ATI and Nvidia, with their Radeon and Geforce lines respectively, taking around 90% of the independent graphics card market between them, while other manufacturers were forced into much smaller, niche markets.[7].

[edit] Components

A modern video card consists of a printed circuit board on which the components are mounted. These include:

[edit] Graphics processing unit (GPU)

A GPU is a dedicated processor optimized for accelerating graphics. The processor is designed specifically to perform floating-point calculations which are fundamental to 3D graphics rendering. The main attributes of the GPU are the core clock frequency, which typically ranges from 250 to 850 MHz, and the number of pipelines (vertex and fragment shaders), which translate a 3D image characterized by vertices and lines into a 2D image formed by pixels.

[edit] Video BIOS

The video BIOS or firmware contains the basic program that governs the video card's operations and provides the instructions that allow the computer and software to interact with the card. It may contain information on the memory timing, operating speeds and voltages of the graphics processor and RAM and other information. It is sometimes possible to change the BIOS (e.g. to enable factory-locked settings for higher performance) although this is typically only done by video card overclockers, and has the potential to irreversibly damage the card.

[edit] Video memory

Type Memory clock rate (MHz) Bandwidth (GB/s)
DDR 166 - 950 1.2 - 30.4
DDR2 533 - 1000 8.5 - 16
GDDR3 700 - 1800 5.6 - 54.4
GDDR4 1600 - 2400 64 - 156.6
GDDR5 3000 - 3800 130 - 230

The memory capacity of most modern video cards range from 128 MB to 4 GB, though very few cards actually go over 1 GB.[8][9] Since video memory needs to be accessed by the GPU and the display circuitry, it often uses special high speed or multi-port memory, such as VRAM, WRAM, SGRAM, etc. Around 2003, the video memory was typically based on DDR technology. During and after that year, manufacturers moved towards DDR2, GDDR3 and GDDR4 even GDDR5 utilized most notably by the ATI Radeon HD 4870. The effective memory clock rate in modern cards are generally between 400 MHz and 3.8 GHz.

Video memory may be used for storing other data as well as the screen image, such as the Z-buffer, which manages the depth coordinates in 3D graphics, textures, vertex buffers, and compiled shader programs.

[edit] RAMDAC

The RAMDAC, or Random Access Memory Digital-to-Analog Converter, converts digital signals to analog signals for use by a computer display that uses analog inputs such as CRT displays. Depending on the number of bits used and the RAMDAC data transfer rate, the converter will be able to support different computer display refresh rates. With CRT displays, it is best to work over 75 Hz and never under 60 Hz, in order to minimize flicker.[10] (With LCD displays, flicker is not a problem.) Due to the growing popularity of digital computer displays and the integration of the RAMDAC onto the GPU die, it has mostly disappeared as a discrete component. All current LCD and plasma displays and TVs work in the digital domain and do not require a RAMDAC. There are few remaining legacy LCD and plasma displays which feature analog inputs (VGA, component, SCART etc.) only; these require a RAMDAC but they reconvert the analog signal back to digital before they can display it, with the unavoidable loss of quality stemming from this digital-to-analog-to-digital conversion.

[edit] Outputs

The most common connection systems between the video card and the computer display are:

Video Graphics Array (VGA) (DE-15) Analog-based standard adopted in the late 1980s designed for CRT displays, also called VGA connector. Some problems of this standard are electrical noise, image distortion and sampling error evaluating pixels.
Digital Visual Interface (DVI) Digital-based standard designed for displays such as flat-panel displays (LCDs, plasma screens, wide High-definition television displays) and video projectors. It avoids image distortion and electrical noise, corresponding each pixel from the computer to a display pixel, using its native resolution.
Video In Video Out (VIVO) for S-Video, Composite video and Component video Included to allow the connection with televisions, DVD players, video recorders and video game consoles. They often come in two 9-pin Mini-DIN connector variations, and the VIVO splitter cable generally comes with either 4 connectors (S-Video in and out + composite video in and out) or 6 connectors (S-Video in and out + component PB out + component PR out + component Y out (also composite out) + composite in).
Image:Pseudo miniDIN-9 Diagram.png
High-Definition Multimedia Interface (HDMI) An advanced digital audio/video interconnect released in 2003, and is commonly used to connect game consoles and DVD players to a display. HDMI supports copy protection through HDCP.
DisplayPort An advanced license and royalty-free digital audio/video interconnect released in 2007. DisplayPort intends to replace VGA and DVI for connecting a display to a computer.
9-pin VIVO for S-Video (TV-out), DVI for HDTV, and DE-15 for VGA outputs.

mic

A microphone, sometimes colloquially called a mic or mike (both pronounced /ˈmaɪk/), is an acoustic-to-electric transducer or sensor that converts sound into an electrical signal. Microphones are used in many applications such as telephones, tape recorders, hearing aids, motion picture production, live and recorded audio engineering, in radio and television broadcasting and in computers for recording voice, VoIP, and for non-acoustic purposes such as ultrasonic checking.

A Neumann U87 condenser microphone

The most common design today uses a thin membrane which vibrates in response to sound pressure. This movement is subsequently translated into an electrical signal. Most microphones in use today for audio use electromagnetic induction (dynamic microphone), capacitance change (condenser microphone, pictured right), piezoelectric generation, or light modulation to produce the signal from mechanical vibration.

floopy disk

Disket

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Langsung ke: navigasi, cari
Sebuah cakram liuk.

Cakram liuk atau disket (bahasa Inggris: floppy disk) adalah sebuah perangkat penyimpanan data yang terdiri dari sebuah medium penyimpanan magnetis bulat yang tipis dan lentur dan dilapisi lapisan plastik berbentuk persegi atau persegi panjang.

Cakram liuk "dibaca" dan "ditulis" menggunakan kandar cakram liuk (floppy disk drive, FDD). Kapasitas cakram liuk yang paling umum adalah 1,44 MB (seperti yang tertera pada cakram liuk), meski kapasitas sebenarnya adalah sekitar 1,38 MB.

C-MOS

Inverter CMOS statis

Complementary metal–oxide–semiconductor (CMOS) atau semikonduktor–oksida–logam komplementer, adalah sebuah jenis utama dari rangkaian terintegrasi. Teknologi CMOS digunakan di mikroprosesor, pengontrol mikro, RAM statis, dan sirkuit logika digital lainnya. Teknologi CMOS juga digunakan dalam banyak sirkuit analog, seperti sensor gambar, pengubah data, dan trimancar terintegrasi untuk berbagai jenis komunikasi. Frank Wanlass berhasil mematenkan CMOS pada tahun 1967 (US Patent 3,356,858).

CMOS juga sering disebut complementary-symmetry metal–oxide–semiconductor or COSMOS (semikonduktor–logam–oksida komplementer-simetris). Kata komplementer-simetris merujuk pada kenyataan bahwa biasanya desain digital berbasis CMOS menggunakan pasangan komplementer dan simetris dari MOSFET semikonduktor tipe-p dan semikonduktor tipe-n untuk fungsi logika.

Dua karakter penting dari CMOS adalah kekebalan desahnya yang tinggi dan penggunaan daya statis yang rendah. Daya hanya diambil saat transistor dalam CMOS berpindah diantara kondisi hidup dan mati. Akibatnya, peranti CMOS tidak menimbulkan bahang sebanyak sirkuit logika lainnya, seperti logika transistor-transistor (TTL) atau logika NMOS, yang hanya menggunakan peranti tipe-n tanpa tipe-p. CMOS juga memungkinkan chip logika dengan kepadatan tinggi dibuat.

Kalimat "metal–oxide–semiconductor" atau semikonduktor–logam–oksida adalah sebuah sebutan pada struktur fisik beberapa transistor efek medan, memiliki gerbang elektroda logam yang terletak diatas isolator oksida logam, yang juga berada diatas bahan semikonduktor. Aluminium digunakan pertama kali, tetapi sekarang digunakan bahan polisilikon. Gerbang logam lain dibuat seiring kedatangan material dielektrik permitivitas tinggi didalam proses pembuatan CMOS, seperti yang diumumkan oleh IBM dan Intel untuk node 45 nanometer dan lebih kecil [1].

CASING

24 November 2007

Casing

Casing merupakan bagian komputer yang berfungsi sebagai pakaian atau pelindung dari CPU. Bentuk yang umum adalah kotak persegi, namun bisa dengan modifikasi bagi mereka yang senang mengotak-atik casing ini.
Selain sebagai pelindung CPU, casing juga bisa berfungsi sebagai pendingin tambahan. Karena biasanya, casing modern saat ini dilengkapi dengan kipas pendingin yang jumlah nya bisa lebih dari satu buah.
Fungsi lainnya yang utama adalah sebagai pondasi untuk menempatkan berbagai bagian komputer lainnya, terutama CPU, seperti motherboard, vga card, soundcard dan lain-lain.
Sebagai pelindung, casing bermanfaat melindungi bagian dalamnya dari kotoran atau debu, dari benturan dengan benda lain, sehingga bagian-bagian yang vital akan aman dan tidak cepat rusak.
Selain fungsi primernya tersebut, casing juga dapat tampil dengan berbagai macam warna dan bentuk yang sesuai dengan keinginan kita. Tentu saja casing hasil modifikasi ini harganya lebih mahal.
Yang terpenting dalam pemilihan casing adalah fungsi utamanya. Sehingga komputer kita berada dalam keadaan yang aman dan terlindungi.

monitor

Monitor

Monitor adalah suatu tipe data abstrak yang dapat mengatur aktivitas serta penggunaan resource oleh beberapa thread. Ide monitor pertama kali diperkenalkan oleh C.A.R Hoare dan Per Brinch-Hansen pada awal 1970-an.

Monitor terdiri atas data-data private dengan fungsi-fungsi public yang dapat mengakses data-data tersebut. Method-method dalam suatu monitor sudah dirancang sedemikian rupa agar hanya ada satu buah method yang dapat bekerja pada suatu saat. Hal ini bertujuan untuk menjaga agar semua operasi dalam monitor bersifat mutual exclusion.

Monitor dapat dianalogikan sebagai sebuah bangunan dengan tiga buah ruangan yaitu satu buah ruangan kontrol, satu buah ruang-tunggu-masuk, satu buah ruang-tunggu-dalam. Ketika suatu thread memasuki monitor, ia memasuki ruang-tunggu-masuk (enter). Ketika gilirannya tiba, thread memasuki ruang kontrol (acquire), di sini thread menyelesaikan tugasnya dengan shared resource yang berada di ruang kontrol (owning). Jika tugas thread tersebut belum selesai tetapi alokasi waktu untuknya sudah habis atau thread tersebut menunggu pekerjaan thread lain selesai, thread melepaskan kendali atas monitor (release) dan dipindahkan ke ruang-tunggu-dalam (waiting queue). Ketika gilirannya tiba kembali, thread memasuki ruang kontrol lagi (acquire). Jika tugasnya selesai, ia keluar dari monitor (release and exit).

Gambar 20.1. Monitor

Monitor

Karena masalah sinkronisasi begitu rumit dan beragam, monitor menyediakan tipe data condition untuk programmer yang ingin menerapkan sinkronisasi yang sesuai untuk masalah yang dihadapinya. Condition memiliki operasi-operasi:

  1. Wait, sesuai namanya thread yang memanggil fungsi ini akan dihentikan kerjanya.

  2. Signal, jika suatu thread memanggil fungsi ini, satu (dari beberapa) thread yang sedang menunggu akan dibangunkan untuk bekerja kembali. Operasi ini hanya membangunkan tepat satu buah thread yang sedang menunggu. Jika tidak ada thread yang sedang menunggu, tidak akan terjadi apa-apa (bedakan dengan operasi buka pada semafor).

Ilustrasi monitor dengan condition variable:

Gambar 20.2. Monitor dengan condition variable

Monitor dengan condition variable

Bayangkan jika pada suatu saat sebuah thread A memanggil fungsi signal pada condition x (x.signal()) dan ada sebuah thread B yang sedang menunggu operasi tersebut (B telah memanggil fungsi x.wait() sebelumnya), ada dua kemungkinan keadaan thread A dan B setelah A mengeksekusi x.signal():

  1. Signal-and-Wait, A menunggu sampai B keluar dari monitor atau menunggu condition lain yang dapat mengaktifkannya.

  2. Signal-and-Continue, B menunggu sampai A keluar dari monitor atau menunggu condition lain yang dapat mengakifkannya.

Monitor dikembangkan karena penggunaan semafor yang kurang praktis. Hal itu disebabkan kesalahan pada penggunaan semafor tidak dapat dideteksi oleh compiler. Keuntungan memakai monitor:

  1. Kompilator pada bahasa pemrograman yang telah mengimplementasikan monitor akan memastikan bahwa resource yang dapat diakses oleh beberapa thread dilindungi oleh monitor, sehingga prinsip mutual exclusion tetap terjaga.

  2. Kompilator bisa memeriksa kemungkinan adanya deadlock.